Thermal Power

A thermal power station is a power plant in which the prime mover is steam driven. Water is heated, turns into steam and spins a steam turbine which drives an electrical generator. After it passes through the turbine, the steam is condensed in a condenser and recycled to where it was heated; this is known as a Rankine cycle. The greatest variation in the design of thermal power stations is due to the different fossil fuel resources generally used to heat the water. Some prefer to use the term energy center because such facilities convert forms of heat energy into electrical energy. Certain thermal power plants also are designed to produce heat energy for industrial purposes of district heating, or desalination of water, in addition to generating electrical power. Globally, fossil fueled thermal power plants produce a large part of man-made CO2 emissions to the atmosphere, and efforts to reduce these are varied and widespread.

Thermal Energy

Thermal energy is the part of the total potential energy and kinetic energy of an object or sample of matter that results in the system temperature. It is represented by the variable Q, and can be measured in Joules. This quantity may be difficult to determine or even meaningless unless the system has attained its temperature only through warming (heating), and not been subjected to work input or output, or any other energy-changing processes. Because the total amount of heat that enters an object is not a conserved quantity like mass or energy, and may be destroyed or created by many processes, the idea of an object's thermal energy or "heat content," something that remains a measureable and objective part of the internal energy of a body, cannot be strictly upheld. The idea of a thermal (part) of object internal energy is therefore useful only as an ideal model, in special cases where the total integrated energy of heat added or removed from a system happens to stay approximately constant as heat is conducted through the system.